SecB-like chaperone controls a toxin-antitoxin stress-responsive system in Mycobacterium tuberculosis.

نویسندگان

  • Patricia Bordes
  • Anne-Marie Cirinesi
  • Roy Ummels
  • Ambre Sala
  • Samer Sakr
  • Wilbert Bitter
  • Pierre Genevaux
چکیده

A major step in the biogenesis of newly synthesized precursor proteins in bacteria is their targeting to the Sec translocon at the inner membrane. In gram-negative bacteria, the chaperone SecB binds nonnative forms of precursors and specifically transfers them to the SecA motor component of the translocase, thus facilitating their export. The major human pathogen Mycobacterium tuberculosis is an unusual gram-positive bacterium with a well-defined outer membrane and outer membrane proteins. Assistance to precursor proteins by chaperones in this bacterium remains largely unexplored. Here we show that the product of the previously uncharacterized Rv1957 gene of M. tuberculosis can substitute for SecB functions in Escherichia coli and prevent preprotein aggregation in vitro. Interestingly, in M. tuberculosis, Rv1957 is clustered with a functional stress-responsive higB-higA toxin-antitoxin (TA) locus of unknown function. Further in vivo experiments in E. coli and in Mycobacterium marinum strains that do not possess the TA-chaperone locus show that the severe toxicity of the toxin was entirely inhibited when the antitoxin and the chaperone were jointly expressed. We found that Rv1957 acts directly on the antitoxin by preventing its aggregation and protecting it from degradation. Taken together, our results show that the SecB-like chaperone Rv1957 specifically controls a stress-responsive TA system relevant for M. tuberculosis adaptive response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multitasking SecB chaperones in bacteria

Protein export in bacteria is facilitated by the canonical SecB chaperone, which binds to unfolded precursor proteins, maintains them in a translocation competent state and specifically cooperates with the translocase motor SecA to ensure their proper targeting to the Sec translocon at the cytoplasmic membrane. Besides its key contribution to the Sec pathway, SecB chaperone tasking is critical ...

متن کامل

Directed evolution of SecB chaperones toward toxin-antitoxin systems.

SecB chaperones assist protein export in bacteria. However, certain SecB family members have diverged to become specialized toward the control of toxin-antitoxin (TA) systems known to promote bacterial adaptation to stress and persistence. In such tripartite TA-chaperone (TAC) systems, the chaperone was shown to assist folding and to prevent degradation of its cognate antitoxin, thus facilitati...

متن کامل

Chaperone addiction of toxin–antitoxin systems

Bacterial toxin-antitoxin (TA) systems, in which a labile antitoxin binds and inhibits the toxin, can promote adaptation and persistence by modulating bacterial growth in response to stress. Some atypical TA systems, known as tripartite toxin-antitoxin-chaperone (TAC) modules, include a molecular chaperone that facilitates folding and protects the antitoxin from degradation. Here we use a TAC m...

متن کامل

Comprehensive Functional Analysis of Mycobacterium tuberculosis Toxin-Antitoxin Systems: Implications for Pathogenesis, Stress Responses, and Evolution

Toxin-antitoxin (TA) systems, stress-responsive genetic elements ubiquitous in microbial genomes, are unusually abundant in the major human pathogen Mycobacterium tuberculosis. Why M. tuberculosis has so many TA systems and what role they play in the unique biology of the pathogen is unknown. To address these questions, we have taken a comprehensive approach to identify and functionally charact...

متن کامل

Structural and functional studies of the Mycobacterium tuberculosis VapBC30 toxin-antitoxin system: implications for the design of novel antimicrobial peptides

Toxin-antitoxin (TA) systems play important roles in bacterial physiology, such as multidrug tolerance, biofilm formation, and arrest of cellular growth under stress conditions. To develop novel antimicrobial agents against tuberculosis, we focused on VapBC systems, which encompass more than half of TA systems in Mycobacterium tuberculosis. Here, we report that theMycobacterium tuberculosis Vap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 20  شماره 

صفحات  -

تاریخ انتشار 2011